FFT techniques in the numerical solution of convolution equations (Q1094126)

From MaRDI portal





scientific article; zbMATH DE number 4024734
Language Label Description Also known as
English
FFT techniques in the numerical solution of convolution equations
scientific article; zbMATH DE number 4024734

    Statements

    FFT techniques in the numerical solution of convolution equations (English)
    0 references
    1987
    0 references
    The authors describe a code for the numerical solution of Volterra integral equations and Volterra integro-differential equations of convolution type. They use an imbedded Runge-Kutta-Fehlberg formula with constant step size and apply the FFT-techniques of the reviewer, \textit{Ch. Lubich} and \textit{M. Schlichte} [SIAM J. Sci. Stat. Comput. 6, 532-541 (1985; Zbl 0581.65095)]. A second part of this article gives a detailed description of the computation of the weights of fractional quadrature formulas [cf. \textit{Ch. Lubich}, SIAM J. Math. Anal. 17, 704-719 (1986; Zbl 0624.65015)], again using FFT-routines.
    0 references
    0 references
    Abel-Volterra equations
    0 references
    reducible quadrature
    0 references
    fast Fourier transform
    0 references
    Volterra integro-differential equations of convolution type
    0 references
    imbedded Runge-Kutta-Fehlberg formula
    0 references
    fractional quadrature formulas
    0 references

    Identifiers