Einige Eindeutigkeitssätze in der affinen Differentialgeometrie. (Some uniqueness theorems in affine differential geometry) (Q1105836)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Einige Eindeutigkeitssätze in der affinen Differentialgeometrie. (Some uniqueness theorems in affine differential geometry) |
scientific article; zbMATH DE number 4060229
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Einige Eindeutigkeitssätze in der affinen Differentialgeometrie. (Some uniqueness theorems in affine differential geometry) |
scientific article; zbMATH DE number 4060229 |
Statements
Einige Eindeutigkeitssätze in der affinen Differentialgeometrie. (Some uniqueness theorems in affine differential geometry) (English)
0 references
1988
0 references
The paper begins with remarks on the characterization of ellipsoids by constant affine mean curvatures and on the variation of the affine surface area. The following theorem is shown: If related points of two convex surfaces have always parallel difference vectors and the same values of the first mean curvature, then they are affine images of each other.
0 references
affine curvature integral
0 references
Minkowski integral formula
0 references
ellipsoids
0 references
affine mean curvatures
0 references
affine surface area
0 references
convex surfaces
0 references