A characterization of the interpolation spaces of \(H^ 1\) and \(L^{\infty}\) on the line (Q1122110)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A characterization of the interpolation spaces of \(H^ 1\) and \(L^{\infty}\) on the line |
scientific article; zbMATH DE number 4105628
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A characterization of the interpolation spaces of \(H^ 1\) and \(L^{\infty}\) on the line |
scientific article; zbMATH DE number 4105628 |
Statements
A characterization of the interpolation spaces of \(H^ 1\) and \(L^{\infty}\) on the line (English)
0 references
1988
0 references
It is shown that the spaces \((H^ 1({\mathbb{R}}),L^{\infty}({\mathbb{R}}))\) form a Calderon-Mityagin pair. It follows that the interpolation spaces for this pair consist of elements whose nontangential maximal functions lie in rearrangement invariant spaces.
0 references
Calderon-Mityagin pair
0 references
interpolation spaces
0 references
nontangential maximal functions
0 references
rearrangement invariant spaces
0 references