Global solutions of Maxwell-Higgs on Minkowski space (Q1279942)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Global solutions of Maxwell-Higgs on Minkowski space |
scientific article; zbMATH DE number 1251424
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Global solutions of Maxwell-Higgs on Minkowski space |
scientific article; zbMATH DE number 1251424 |
Statements
Global solutions of Maxwell-Higgs on Minkowski space (English)
0 references
17 February 1999
0 references
The article concerns the initial value problem for the Euler equations \[ D^jD_j\Phi= -U_{\overline\Phi},\quad \partial_kF^{jk}= i(\overline\Phi D^j\Phi- \overline{D^j\Phi}\Phi) \] of the action functional \[ \int_{\mathbb{R}} (\overline{D^j\Phi} D_j\Phi- U(\Phi)- \textstyle{{1\over 4}} F^{jk} F_{jk})d^3x, \] where \(D^j= \partial^j+ iA^j\), \(F^{jk}= \partial^j A^k- \partial^kA^j\), \(U(\Phi)= \lambda(|\Phi|^2- 1)^2\). This section involves the field \(\Phi(x)\) and the vector potential \(A(x)\) which are smooth functions in the Minkowski space \(\mathbb{R}\) with coordinates \(x^j\) \((0\leq j\leq 2,\;x^0= t)\) and metrices \((g_{jk})= \text{diag}(1, -1,-1)\). The author proves the existence of a unique global solution in a Sobolev space depending continuously on the initial data provided the necessary condition \[ \partial_t\text{ div }A(x, 0)- i(\partial_t\overline\Phi(x, 0) \Phi(x, 0)-\partial_t \Phi(x, 0)\overline\Phi(x, 0))= 0 \] be satisfied.
0 references
Maxwell-Higgs equations
0 references
action functional
0 references
Minkowski space
0 references
existence of a unique global solution in a Sobolev space
0 references
0.9238738
0 references
0.92247677
0 references
0.9202959
0 references
0.91496927
0 references
0.91174984
0 references
0.9106747
0 references