Weights for the ergodic maximal operator and a.e. convergence of the ergodic averages for functions in Lorentz spaces (Q1313231)

From MaRDI portal





scientific article; zbMATH DE number 490585
Language Label Description Also known as
English
Weights for the ergodic maximal operator and a.e. convergence of the ergodic averages for functions in Lorentz spaces
scientific article; zbMATH DE number 490585

    Statements

    Weights for the ergodic maximal operator and a.e. convergence of the ergodic averages for functions in Lorentz spaces (English)
    0 references
    18 December 1994
    0 references
    Let \(T\) be an invertible measure preserving transformation in a measure space \((X, {\mathcal F}, \mu)\). Put \(T_{n,m}f = (n + m + 1)^{-1} \sum^ m_{j = - n} f \circ T^ j\), \(Mf = \sup_{n,m} T_{n,m} | f |\). For \(1 \leq q \leq p < \infty\) let \(L_{p,q} (v)\) denote the Lorentz space of functions \(f\) with \[ \| f \|_{p,q,v} : = \left( q \int^ \infty_ 0 \Bigl( \int_{\{x/ | f(x) | > y\}} vdy \Bigr)^{q/p} y^{q - 1} dy \right)^{1/q} < \infty. \] For \(q = \infty\), put \[ \| f \|_{p,q,v} = \sup_{y>0} y \Bigl( \int_{\{x/ | f(x) | > y\}} vd \mu \Bigr)^{1/p}. \] The author extends several results of \textit{F. J. Martin-Reyes} [Trans. Am. Math. Soc. 296, 61-82 (1986; Zbl 0612.28014)] to \(L_{p,q}\)-spaces. Example: Let \(1 \leq q \leq p < \infty\) and let \(u,v\) be positive measurable functions. The following statements are equivalent: (a) \(\| Mf \|_{p, \infty,u} \leq C \| f \|_{p,q,v}\), (b) \(\sup_{n,m \geq 0} \| T_{n,m} f \|_{p, \infty,u} \leq C \| f \|_{p,q,v}\), (c) \((\sum^ k_{i = 0} u \circ T^ i)/(\sum^ k_{i = 0} v^{1 - p'} \circ T^ i)^{p - 1} \leq C(k + 1)^ p\) (with \(C\) indep. of \(k\) and \(pp' = p + p')\).
    0 references
    weights
    0 references
    ergodic maximal operator
    0 references
    ergodic average
    0 references
    invertible measure preserving transformation
    0 references
    Lorentz space
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references