Carleman estimates for a subelliptic operator and unique continuation (Q1323154)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Carleman estimates for a subelliptic operator and unique continuation |
scientific article; zbMATH DE number 566967
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Carleman estimates for a subelliptic operator and unique continuation |
scientific article; zbMATH DE number 566967 |
Statements
Carleman estimates for a subelliptic operator and unique continuation (English)
0 references
10 May 1994
0 references
We establish a Carleman type inequality for the subelliptic operator \({\mathcal L}= \Delta_ z+ | z|^ 2 \partial_ t^ 2\) in \(\mathbb{R}^{n+1}\), \(n\geq 2\), where \(z\in \mathbb{R}^ n\), \(t\in \mathbb{R}\). As a consequence, we show that \(-{\mathcal L}+V\) has the strong unique continuation property at points of the degeneracy manifold \(\{(0,t)\in \mathbb{R}^{n+1}\mid t\in\mathbb{R}\}\) if the potential \(V\) is locally in certain \(L^ p\) spaces.
0 references
Grushin operator
0 references
Carleman type inequality
0 references
subelliptic operator
0 references
strong unique continuation property
0 references
0 references
0 references
0.94213736
0 references
0.94143766
0 references
0.92907447
0 references
0.92610854
0 references
0.9171837
0 references
0 references
0.91207194
0 references