Functional calculus in certainLizorkin-Triebel spaces (Q1345865)

From MaRDI portal





scientific article; zbMATH DE number 734522
Language Label Description Also known as
English
Functional calculus in certainLizorkin-Triebel spaces
scientific article; zbMATH DE number 734522

    Statements

    Functional calculus in certainLizorkin-Triebel spaces (English)
    0 references
    0 references
    17 July 1995
    0 references
    We prove that every real variable function \(G\) such that \(G(0)=0\) and \(G''\) is a bounded measure acts, via left composition, on the Lizorkin- Triebel space \(F_ p^{s,q} (\mathbb{R}^ n)\), for \(1<q< +\infty\), \(1<p <+\infty\) and \(1<s< 1+(1/p)\). More precisely, there exists a number \(C= C(G,n, s,p, q)>0\) such that \[ \| G\circ f \|_{F_ p^{s,q} (\mathbb{R}^ n)}\leq C\| f \|_{F_ p^{s,q} (\mathbb{R}^ n)}, \] for all real valued \(f\in F_ p^{s,q} (\mathbb{R}^ n)\).
    0 references
    functional calculus
    0 references
    nonlinear operator
    0 references
    composition
    0 references
    Lizorkin-Triebel space
    0 references

    Identifiers