\(L^p\)-\(L^q\) estimates for convolution operators with \(n\)-dimensional singular measures (Q1370730)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: \(L^p\)-\(L^q\) estimates for convolution operators with \(n\)-dimensional singular measures |
scientific article; zbMATH DE number 1079114
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | \(L^p\)-\(L^q\) estimates for convolution operators with \(n\)-dimensional singular measures |
scientific article; zbMATH DE number 1079114 |
Statements
\(L^p\)-\(L^q\) estimates for convolution operators with \(n\)-dimensional singular measures (English)
0 references
13 December 1999
0 references
Let \(d\sigma\) denote a compactly supported smooth density on the graph \(x_{n+1}= \sum^n_{j=1}| x_j|^{a_j}\), here \(a_j>0\). The authors prove nearly sharp \(L^p\)-\(L^q\) estimates for the convolution \(d\sigma* f\). For endpoint results see the authors' paper [Colloq. Math. 76, No. 1, 35-47 (1998; Zbl 0915.42009)].
0 references
singular measures
0 references
\(L^p\)-\(L^q\) estimates
0 references
convolution
0 references
0 references