Ordinary and basic bivariate hypergeometric transformations associated with the Appell and Kampé de Fériet functions (Q1398710)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Ordinary and basic bivariate hypergeometric transformations associated with the Appell and Kampé de Fériet functions |
scientific article; zbMATH DE number 1961626
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Ordinary and basic bivariate hypergeometric transformations associated with the Appell and Kampé de Fériet functions |
scientific article; zbMATH DE number 1961626 |
Statements
Ordinary and basic bivariate hypergeometric transformations associated with the Appell and Kampé de Fériet functions (English)
0 references
7 August 2003
0 references
Some transformation formulas for bivariate hypergeometric functions and their \(q\)-analogues are given. An example is \[ \sum_{i=0}^m \sum_{j=0}^n \frac{(a)_{i+j}(b)_{i+j}(c+c'-1)_{i+j}}{(a+b)_{i+j}(e)_{i+j}(e')_{i+j}} \frac{(-m)_i(e'+n)_i}{i!(c)_i}\frac{(-n)_j(e+m)_j}{j!(c')_j} \] \[ =\sum_{i=0}^m \sum_{j=0}^n \frac{(c+c'-1)_{i+j}}{(a+b)_{i+j}} \frac{(-m)_i(a)_i(b)_i}{i!(c)_i(e)_i}\frac{(-n)_j(a)_j(b)_j}{j!(c')_j(e')_j}. \]
0 references
hypergeometric series
0 references
Appell and Kampé de Fériet functions
0 references
transformation and reduction formulas
0 references
0 references