Ordinary and basic bivariate hypergeometric transformations associated with the Appell and Kampé de Fériet functions (Q1398710)

From MaRDI portal





scientific article; zbMATH DE number 1961626
Language Label Description Also known as
English
Ordinary and basic bivariate hypergeometric transformations associated with the Appell and Kampé de Fériet functions
scientific article; zbMATH DE number 1961626

    Statements

    Ordinary and basic bivariate hypergeometric transformations associated with the Appell and Kampé de Fériet functions (English)
    0 references
    7 August 2003
    0 references
    Some transformation formulas for bivariate hypergeometric functions and their \(q\)-analogues are given. An example is \[ \sum_{i=0}^m \sum_{j=0}^n \frac{(a)_{i+j}(b)_{i+j}(c+c'-1)_{i+j}}{(a+b)_{i+j}(e)_{i+j}(e')_{i+j}} \frac{(-m)_i(e'+n)_i}{i!(c)_i}\frac{(-n)_j(e+m)_j}{j!(c')_j} \] \[ =\sum_{i=0}^m \sum_{j=0}^n \frac{(c+c'-1)_{i+j}}{(a+b)_{i+j}} \frac{(-m)_i(a)_i(b)_i}{i!(c)_i(e)_i}\frac{(-n)_j(a)_j(b)_j}{j!(c')_j(e')_j}. \]
    0 references
    0 references
    hypergeometric series
    0 references
    Appell and Kampé de Fériet functions
    0 references
    transformation and reduction formulas
    0 references
    0 references
    0 references

    Identifiers