Asymptotic behaviour of Betti numbers of real algebraic surfaces (Q1405746)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Asymptotic behaviour of Betti numbers of real algebraic surfaces |
scientific article; zbMATH DE number 1971456
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Asymptotic behaviour of Betti numbers of real algebraic surfaces |
scientific article; zbMATH DE number 1971456 |
Statements
Asymptotic behaviour of Betti numbers of real algebraic surfaces (English)
0 references
26 August 2003
0 references
Summary: Let \(X_m\) be a non-singular real algebraic surface of degree \(m\) in the complex projective space \(\mathbb C\mathbb P^3\) and \(\mathbb RX_m\) its real point set in \(\mathbb R\mathbb P^3\). In the spirit of the sixteenth Hilbert's problem, one can ask, for each degree \(m\), for the maximal possible value \(\beta_{i,m}\) of the Betti number \(b_i(\mathbb RX_m)\) (\(i=0\) or 1). We show that \(\beta_{i,m}\) is asymptotically equivalent to \(l_i\cdot m^3\) for some real number \(l_i\) and prove inequalities \(\frac{13}{36} \leq l_0 \leq \frac{5}{12}\) and \(\frac{13}{18} \leq l_1 \leq \frac{5}{6}\).
0 references
real algebraic surfaces
0 references
Betti numbers
0 references
Viro method
0 references
sixteenth Hilbert problem
0 references
0.92432153
0 references
0 references
0.91258717
0 references
0.9047415
0 references
0.90097487
0 references
0.8982633
0 references
0.89007235
0 references
0.8870704
0 references
0.88533765
0 references