Inequalities and infinite product formula for Ramanujan generalized modular equation function (Q1635633)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Inequalities and infinite product formula for Ramanujan generalized modular equation function |
scientific article; zbMATH DE number 6879666
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Inequalities and infinite product formula for Ramanujan generalized modular equation function |
scientific article; zbMATH DE number 6879666 |
Statements
Inequalities and infinite product formula for Ramanujan generalized modular equation function (English)
0 references
31 May 2018
0 references
Let \[ F(a, b ; c ; x)= {}_2F_{1}(a, b ; c ; x)=\sum_{n=0}^{\infty} \frac{(a, n)(b, n)}{(c, n)} \frac{x^{n}}{n !} \quad(|x|<1) \] be the Gaussian hypergeometric function. Let also \(a \in(0,1 / 2], r \in(0,1)\) and \(p>0 .\) Then the Ramanujan generalized modular equation with signature \(1 / a\) and degree \(p\) is given by \[ \frac{F\left(a, 1-a ; 1 ; 1-s^{2}\right)}{F\left(a, 1-a ; 1 ; s^{2}\right)}=p \frac{F\left(a, 1-a ; 1 ; 1-r^{2}\right)}{F\left(a, 1-a ; 1 ; r^{2}\right)} \] Making use of the decreasing homeomorphism \(\mu_{a}:(0,1) \rightarrow(0, \infty)\) defined by \[ \mu_{a}(r)=\frac{\pi}{2 \sin (\pi a)} \frac{F\left(a, 1-a ; 1 ; 1-r^{2}\right)}{F\left(a, 1-a ; 1 ; r^{2}\right)} \] we obtain the Ramanujan generalized modular equation function. The authors introduce several inequalities for \(\mu_{a}(r)\) and provide an infinite product formula for \(\mu_{1/4}(r)\) .
0 references
Gaussian hypergeometric function
0 references
Ramanujan generalized modular equation
0 references
quadratic transformation
0 references
infinite product
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0.9075717
0 references
0.88015383
0 references
0.87492484
0 references
0 references
0.87215996
0 references
0 references
0.8658205
0 references