Lipschitz spaces and fractional integral operators associated with nonhomogeneous metric measure spaces (Q1722255)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Lipschitz spaces and fractional integral operators associated with nonhomogeneous metric measure spaces |
scientific article; zbMATH DE number 7021865
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Lipschitz spaces and fractional integral operators associated with nonhomogeneous metric measure spaces |
scientific article; zbMATH DE number 7021865 |
Statements
Lipschitz spaces and fractional integral operators associated with nonhomogeneous metric measure spaces (English)
0 references
14 February 2019
0 references
Summary: The fractional operator on nonhomogeneous metric measure spaces is introduced, which is a bounded operator from \(L^p \left(\mu\right)\) into the space \(L^{q, \infty} \left(\mu\right)\). Moreover, the Lipschitz spaces on nonhomogeneous metric measure spaces are also introduced, which contain the classical Lipschitz spaces. The authors establish some equivalent characterizations for the Lipschitz spaces, and some results of the boundedness of fractional operator in Lipschitz spaces are also presented.
0 references
Lipschitz spaces on nonhomogeneous metric measure spaces
0 references
boundedness of the fractional operator in Lipschitz spaces
0 references
0 references
0 references
0 references
0 references
0 references