Estimates on the Bergman kernels in a tangential direction on pseudoconvex domains in \(\mathbb{C}^3\) (Q1728531)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Estimates on the Bergman kernels in a tangential direction on pseudoconvex domains in \(\mathbb{C}^3\) |
scientific article; zbMATH DE number 7029290
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Estimates on the Bergman kernels in a tangential direction on pseudoconvex domains in \(\mathbb{C}^3\) |
scientific article; zbMATH DE number 7029290 |
Statements
Estimates on the Bergman kernels in a tangential direction on pseudoconvex domains in \(\mathbb{C}^3\) (English)
0 references
25 February 2019
0 references
Summary: Let \(\Omega\) be a smoothly bounded pseudoconvex domain in \(\mathbb{C}^3\) and assume that \(T_{\Omega}^{r e g}(z_0) < \infty\) where \(z_0 \in b \Omega\), the boundary of \(\Omega\). Then we get optimal estimates of the Bergman kernel function along some ``almost tangential curve'' \(C_b(z_0, \delta_0) \subset \Omega \cup \left\{z_0\right\}\).
0 references
0 references
0 references
0 references