Linear independence of certain numbers (Q1737358)

From MaRDI portal





scientific article; zbMATH DE number 7042958
Language Label Description Also known as
English
Linear independence of certain numbers
scientific article; zbMATH DE number 7042958

    Statements

    Linear independence of certain numbers (English)
    0 references
    0 references
    27 March 2019
    0 references
    The paper deals with linear independence of infinite series over the rational numbers. The main result states the following. Let \(k\ge2\), \(b\ge2\) and \(1\le a_1 < a_2 < \dots < a_m\) be integers such that \(\sqrt[k]{\frac{a_i}{a_j}}\not\in\mathbb Q\) for any \(i\ne j\). Then the real numbers \[ 1,\quad \sum_{n=1}^\infty \frac{1}{b^{a_1n^k}} , \quad \sum_{n=1}^\infty \frac{1}{b^{a_2n^k}},\, \quad \ldots,\quad \sum_{n=1}^\infty \frac{1}{b^{a_mn^k}} \] are linearly independent over the rational numbers.
    0 references
    0 references
    irrationality
    0 references
    linear independence
    0 references
    infinite series
    0 references

    Identifiers