The chiral determinant and the eta invariant (Q1822113)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The chiral determinant and the eta invariant |
scientific article; zbMATH DE number 4001047
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The chiral determinant and the eta invariant |
scientific article; zbMATH DE number 4001047 |
Statements
The chiral determinant and the eta invariant (English)
0 references
1987
0 references
For \(\{\partial_ y\}\), \(y\in {\mathbb{R}}\), a one parameter family of invertible Weyl operators of possibly nonzero index acting on spinors over an even dimensional compact manifold X, we express the phase of the chiral determinant det \(\partial^{\dag}_{-\infty}\partial_{\infty}\) in terms of the \(\eta\) invariant of a Dirac operator acting on spinors over \({\mathbb{R}}\times X\).
0 references
invertible Weyl operators
0 references
\(\eta \) invariant of a Dirac operator
0 references