Quadratic Gauss sums on matrices (Q1827490)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Quadratic Gauss sums on matrices |
scientific article; zbMATH DE number 2083500
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Quadratic Gauss sums on matrices |
scientific article; zbMATH DE number 2083500 |
Statements
Quadratic Gauss sums on matrices (English)
0 references
6 August 2004
0 references
Let \(F = F_{ p^\alpha }\) be a finite field of order \(p^\alpha\) for some prime \(p\). The author defines a Gauss sum on matrices \(A \in M_n(F)\) as follows: \[ G_s(A) := \sum_{ X \in M_n(F) } \exp \left( {{ 2 \pi i } \over { p }} \, \text{tr}_F \left( \text{tr} \left( A X^s \right) \right) \right) , \] where \(\text{ tr}_F\) denotes the trace map of field extensions \(F/F_p\) and the second tr on the right-hand side is the trace map on matrices. The author derives a formula for \(G_2(A)\) for any \(A \in M_n(F)\) in terms of the usual Gauss sum \[ g_s (a) := \sum_{ x \in F } \exp \left( {{ 2 \pi i } \over { p }} \, \text{tr}_F \left( ax^s \right) \right) . \]
0 references
Character sum
0 references
Gauss sum
0 references
matrix equation
0 references
quadratic form
0 references