Quadratic Gauss sums on matrices (Q1827490)

From MaRDI portal





scientific article; zbMATH DE number 2083500
Language Label Description Also known as
English
Quadratic Gauss sums on matrices
scientific article; zbMATH DE number 2083500

    Statements

    Quadratic Gauss sums on matrices (English)
    0 references
    0 references
    6 August 2004
    0 references
    Let \(F = F_{ p^\alpha }\) be a finite field of order \(p^\alpha\) for some prime \(p\). The author defines a Gauss sum on matrices \(A \in M_n(F)\) as follows: \[ G_s(A) := \sum_{ X \in M_n(F) } \exp \left( {{ 2 \pi i } \over { p }} \, \text{tr}_F \left( \text{tr} \left( A X^s \right) \right) \right) , \] where \(\text{ tr}_F\) denotes the trace map of field extensions \(F/F_p\) and the second tr on the right-hand side is the trace map on matrices. The author derives a formula for \(G_2(A)\) for any \(A \in M_n(F)\) in terms of the usual Gauss sum \[ g_s (a) := \sum_{ x \in F } \exp \left( {{ 2 \pi i } \over { p }} \, \text{tr}_F \left( ax^s \right) \right) . \]
    0 references
    0 references
    Character sum
    0 references
    Gauss sum
    0 references
    matrix equation
    0 references
    quadratic form
    0 references

    Identifiers