A Yamabe type problem on compact spin manifolds (Q1876876)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A Yamabe type problem on compact spin manifolds |
scientific article; zbMATH DE number 2093999
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A Yamabe type problem on compact spin manifolds |
scientific article; zbMATH DE number 2093999 |
Statements
A Yamabe type problem on compact spin manifolds (English)
0 references
20 August 2004
0 references
Let \((M,g,\sigma)\) be a compact spin manifold of dimension \(n\geq 2\). For a metric \(\tilde{g}\) in the conformal class \([g]\) of \(g\), let \(\lambda_1^+(\tilde{g})\) [resp. \(\lambda_1^-(\tilde{g})\)] be the smallest positive (resp. largest negative) eigenvalue of the Dirac operator \(D\) in the metric \(\tilde{g}\). The conformal invariants \(\lambda_{\min}^+(M,[g],\sigma):=\inf_{\tilde{g}\in [g]}\lambda_1^+(\tilde{g}) \text{Vol}(M,\tilde{g})^{1/n}\) and \(\lambda_{\min}^-(M,[g],\sigma):=\inf_{\tilde{g}\in [g]}| \lambda_1^-(g)|\text{Vol}(M,\tilde{g})^{1/n}\) have been studied by many authors [for example, see \textit{O. Hijazi}, Commun. Math. Phys. 104, 151--162 (1986; Zbl 0593.58040); \textit{J. Lott}, Pac. J. Math. 125, 117--126 (1986; Zbl 0605.58044); \textit{C. Bär}, Math. Ann. 293, 39--46 (1992; Zbl 0741.58046); the first author, ``The smallest Dirac eigenvalue in a spin-conformal class and cmc-immersions'' (Preprint, arXiv math. DG/0309061) and ``A variational problem in conformal spin geometry'' (Habilitationsschrift, Univ. Hamburg, May 2003)]. The authors show that the inequalities \[ \lambda_{\min}^+(M,[g],\sigma)\leq \lambda_{\min}^+(S^n)=\frac{n}{2}\omega_n^{1/n}\tag{1} \] and \[ \lambda_{\min}^-(M,[g],\sigma)\leq \lambda_{\min}^-(S^n)=\lambda_{\min}^+(S^n)\tag{2} \] are true, where \(\omega_n\) denotes the volume of the unit standard sphere \(S^n\) (see also the first author, loc. cit.). Moreover, if \((M,g)\) is nonconformally flat and \(n\geq 7\), then both inequalities are strict. If \((M,g)\) is conformally flat, \(D\) is invertible and the mass endomorphism [for this concept, see also the authors, ``Mass endomorphism and spinorial Yamabe type problems on conformally flat manifolds'' (Preprint Inst. É. Cartan, Nancy 2003/58)] possesses a negative (resp. positive) eigenvalue, then inequality (1) [resp. (2)] is also strict.
0 references
compact spin manifold
0 references
conformal class of metrics
0 references
Dirac operator
0 references
eigenvalue
0 references
mass endomorphism
0 references
conformal invariant
0 references
0 references
0 references
0 references
0.9174462
0 references
0.83433497
0 references
0.8192384
0 references
0.81313884
0 references
0.78319526
0 references
0.77550197
0 references