Markov-Sonin Gaussian rule for singular functions (Q1877207)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Markov-Sonin Gaussian rule for singular functions |
scientific article; zbMATH DE number 2091435
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Markov-Sonin Gaussian rule for singular functions |
scientific article; zbMATH DE number 2091435 |
Statements
Markov-Sonin Gaussian rule for singular functions (English)
0 references
16 August 2004
0 references
The authors construct a quadrature formula of Gaussian type for the computation of integrals \(\int_{\mathbb{R}} fW_\beta dx\), where \(W_\beta(x)= e^{-x^2}|x|^\beta\), \(\beta> -1\), is a Markov-Sonin weight and \(f\) can be singular at the origin. Error estimates in weighted \(L^1\) norm and some numerical tests are given.
0 references
quadrature formulas
0 references
orthogonal polynomials
0 references
polynomial approximation
0 references
numerical examples
0 references
Markov-Sonin weight
0 references
error estimates
0 references