The existence of positive solutions for a class of indefinite weight semilinear elliptic problems with critical Sobolev exponent (Q1880537)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The existence of positive solutions for a class of indefinite weight semilinear elliptic problems with critical Sobolev exponent |
scientific article; zbMATH DE number 2104154
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The existence of positive solutions for a class of indefinite weight semilinear elliptic problems with critical Sobolev exponent |
scientific article; zbMATH DE number 2104154 |
Statements
The existence of positive solutions for a class of indefinite weight semilinear elliptic problems with critical Sobolev exponent (English)
0 references
28 September 2004
0 references
The author discusses the existence of positive solutions of the following boundary value problems: \[ \begin{cases} -\Delta u=\lambda g(x)f(u) \quad &\text{in }\Omega\\ u=0\quad &\text{on }\partial\Omega, \end{cases}\tag{1} \] where \(\lambda\) is a real parameter, \(\Omega\) is an open bounded domain in \(\mathbb{R}^N\), \(N\geq 3\), with the smooth boundary. The author considers the critical exponent case \(f(u)=u(1+ |u|^p)\) with \(p=\frac{4}{N-2}\). The function \(g,g:\overline\Omega \to\mathbb{R}^1\) is smooth and changes sign.
0 references
indefinite weight
0 references
positive solution
0 references
critical exponent
0 references
0.98210204
0 references
0.96121514
0 references
0.9481361
0 references
0.94786775
0 references
0.94392246
0 references