The existence of positive solutions for a class of indefinite weight semilinear elliptic problems with critical Sobolev exponent (Q1880537)

From MaRDI portal





scientific article; zbMATH DE number 2104154
Language Label Description Also known as
English
The existence of positive solutions for a class of indefinite weight semilinear elliptic problems with critical Sobolev exponent
scientific article; zbMATH DE number 2104154

    Statements

    The existence of positive solutions for a class of indefinite weight semilinear elliptic problems with critical Sobolev exponent (English)
    0 references
    0 references
    28 September 2004
    0 references
    The author discusses the existence of positive solutions of the following boundary value problems: \[ \begin{cases} -\Delta u=\lambda g(x)f(u) \quad &\text{in }\Omega\\ u=0\quad &\text{on }\partial\Omega, \end{cases}\tag{1} \] where \(\lambda\) is a real parameter, \(\Omega\) is an open bounded domain in \(\mathbb{R}^N\), \(N\geq 3\), with the smooth boundary. The author considers the critical exponent case \(f(u)=u(1+ |u|^p)\) with \(p=\frac{4}{N-2}\). The function \(g,g:\overline\Omega \to\mathbb{R}^1\) is smooth and changes sign.
    0 references
    indefinite weight
    0 references
    positive solution
    0 references
    critical exponent
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references