A class of singular Gierer--Meinhardt systems of elliptic boundary value problems (Q1888601)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A class of singular Gierer--Meinhardt systems of elliptic boundary value problems |
scientific article; zbMATH DE number 2119154
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A class of singular Gierer--Meinhardt systems of elliptic boundary value problems |
scientific article; zbMATH DE number 2119154 |
Statements
A class of singular Gierer--Meinhardt systems of elliptic boundary value problems (English)
0 references
26 November 2004
0 references
The author deals with the following steady-state problems \[ \begin{cases} \Delta u-\alpha u+\rho{u^p\over v^q}+\rho= 0\quad &\text{in }\Omega,\;u|_{\partial\Omega}= 0,\\ \Delta v-\beta v+\rho{u^p\over v^q}= 0\quad &\text{in }\Omega,\;v|_{\partial\Omega}= 0,\end{cases}\tag{1} \] where \(\alpha\), \(\beta\) are positive parameters and \(\rho= \rho(x)\) is the source distributions. The goal of the author is to establish a mathematical theory for singular elliptic systems (1). To this end, the author uses the Schauder fixed point theory and upper-lower solution methods.
0 references
Elliptic systems
0 references
Singular non-quasimonotone Gierer--Meinhardt systems
0 references
0 references