A conditional functional equation connected with the de Sitter plane (Q1895180)

From MaRDI portal





scientific article; zbMATH DE number 785161
Language Label Description Also known as
English
A conditional functional equation connected with the de Sitter plane
scientific article; zbMATH DE number 785161

    Statements

    A conditional functional equation connected with the de Sitter plane (English)
    0 references
    0 references
    20 February 1996
    0 references
    Dans une domaine Sitter [cf. \textit{W. Benz}, Real geometries (1994; Zbl 0819.51002)] on démontre le théorème: Si \(\varphi\) est une bijection en \(\mathbb{R}\), avec \(\varphi (0) = 0\) et que pour \(\omega, \delta : \mathbb{R} \to \mathbb{R}\), on a \(\varphi (x) + \varphi (y) = \omega (x + y)\), \(\text{sgn} (\varphi (x) - \varphi (y)) = \delta (x + y)\) \(\forall x,y \in R\), \(x > y\), alors il y a une constante \(k \neq 0\), avec la quelle \(\delta (x) = \text{sgn} k\) et \(\varphi (x) = \omega (x) = kx\), pour tout \(x \in R\).
    0 references
    conditional functional equation
    0 references
    de Sitter plane
    0 references
    systems of functionals equations
    0 references
    0 references

    Identifiers