A conditional functional equation connected with the de Sitter plane (Q1895180)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A conditional functional equation connected with the de Sitter plane |
scientific article; zbMATH DE number 785161
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A conditional functional equation connected with the de Sitter plane |
scientific article; zbMATH DE number 785161 |
Statements
A conditional functional equation connected with the de Sitter plane (English)
0 references
20 February 1996
0 references
Dans une domaine Sitter [cf. \textit{W. Benz}, Real geometries (1994; Zbl 0819.51002)] on démontre le théorème: Si \(\varphi\) est une bijection en \(\mathbb{R}\), avec \(\varphi (0) = 0\) et que pour \(\omega, \delta : \mathbb{R} \to \mathbb{R}\), on a \(\varphi (x) + \varphi (y) = \omega (x + y)\), \(\text{sgn} (\varphi (x) - \varphi (y)) = \delta (x + y)\) \(\forall x,y \in R\), \(x > y\), alors il y a une constante \(k \neq 0\), avec la quelle \(\delta (x) = \text{sgn} k\) et \(\varphi (x) = \omega (x) = kx\), pour tout \(x \in R\).
0 references
conditional functional equation
0 references
de Sitter plane
0 references
systems of functionals equations
0 references
0.8560734
0 references
0.8529684
0 references
0.8515256
0 references
0 references
0.84857416
0 references
0.84760606
0 references