Determinant theory for \(D_{01}\)-lattice matrices (Q1896328)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Determinant theory for \(D_{01}\)-lattice matrices |
scientific article; zbMATH DE number 788381
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Determinant theory for \(D_{01}\)-lattice matrices |
scientific article; zbMATH DE number 788381 |
Statements
Determinant theory for \(D_{01}\)-lattice matrices (English)
0 references
2 May 1996
0 references
The paper deals with permanents of matrices [cf. \textit{H. Minc}, Permanents (1978; Zbl 0401.15005)]. For a matrix \(A\) over a bounded distributive lattice \((L, \vee, \wedge, 0,1)\) it is proved that: \[ \begin{aligned} \text{per} (A) \wedge \text{per} (B) & \leq \text{per} (AB) \leq \text{per} (A \vee B), \\ \text{per} \bigl( A \text{adj} (A) \bigr) & = \text{per} (A) = \text{per} \bigl( \text{adj} (A)A \bigr). \end{aligned} \] The author also proves a lattice version of the Cayley-Hamilton Theorem suggested by \textit{J. B. Kim}, \textit{A. Baartmans} and \textit{N. S. Sahadin} [Fuzzy Sets Syst. 29, No. 3, 349-356 (1989; Zbl 0668.15004)].
0 references
fuzzy matrix
0 references
fuzzy relation
0 references
determinant
0 references
Cayley-Hamilton theorem
0 references
lattice
0 references
adjoint
0 references
permanents
0 references
0.9631237
0 references
0.9108128
0 references
0.8989411
0 references
0 references
0.8938126
0 references
0.8861468
0 references
0.8849138
0 references
0.8803175
0 references
0.87927985
0 references
0.8779063
0 references