A remark on symplectic matrices (Q1913333)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A remark on symplectic matrices |
scientific article; zbMATH DE number 878381
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A remark on symplectic matrices |
scientific article; zbMATH DE number 878381 |
Statements
A remark on symplectic matrices (English)
0 references
19 June 1996
0 references
Let \(\Gamma_g\) be the Siegel modular group of degree \(g\) with the standard subgroup \(\Gamma_{g, \infty}= \{{{*\;*} \choose {0\;*}}\in \Gamma_g\}\). \(\Gamma_g\) acts on the Siegel half-space \({\mathcal H}_g\) in the usual way. If \(h(Z):= \text{det} (\text{Im Z})\), \(Z\in {\mathcal H}_g\), denotes the height, the author investigates the arithmetic function \[ \alpha_Z (n):= \# \Bigl\{ \Gamma_{g, \infty} M;\;M\in \Gamma_g,\;{\textstyle {1\over {n+1}}} \leq h(M \langle Z\rangle)< {\textstyle {1\over n}} \Bigr\}, \] which plays a decisive role in the proof of convergence of the Siegel-Eisenstein series. The author's main result is \[ \alpha_Z (n)= O(n^{(g+ 1)/2- \delta_g+ \varepsilon}), \quad \varepsilon >0, \quad \delta_g= 1\Bigl/ \Bigl( 1+2 \bigl[ {\textstyle {g\over 2}} \bigr]+ {\textstyle {1\over {g+1}}} \Bigr). \] The proof uses analytic properties of Eisenstein series and a version of Landau's theorem.
0 references
symplectic matrices
0 references
Siegel modular group
0 references
height
0 references
arithmetic function
0 references
Siegel-Eisenstein series
0 references
Landau's theorem
0 references
0.9722724
0 references
0.92439747
0 references
0.9231744
0 references
0.92113864
0 references
0 references
0.9115217
0 references
0.9090831
0 references
0 references