Full Müntz theorem in \(L_ p[0,1]\) (Q1914807)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Full Müntz theorem in \(L_ p[0,1]\) |
scientific article; zbMATH DE number 885481
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Full Müntz theorem in \(L_ p[0,1]\) |
scientific article; zbMATH DE number 885481 |
Statements
Full Müntz theorem in \(L_ p[0,1]\) (English)
0 references
9 June 1996
0 references
The author proves the following theorem, conjectured by P. Borwein and T. Erdélyi: Let \(1< p< \infty\) and \(\{\lambda_i \}^\infty_0\) be a sequence of distinct real numbers greater than \(-1/p\). Then the linear span of the functions \(\{x^{\lambda_i} \}_0^\infty\) is dense in \(L_p [0, 1]\) if and only if \[ \sum^\infty_{i=0} {{\lambda_i+ 1/p} \over {(\lambda_i+ 1/p)^2+ 1}}= \infty. \]
0 references
Müntz theorem
0 references
Lebesgue spaces
0 references
0.9686718
0 references
0.9658054
0 references
0.91216946
0 references
0 references
0 references
0.8609816
0 references
0.8580906
0 references
0.8578645
0 references