On initial conditions for the convergence of simultaneous root finding methods (Q1924484)

From MaRDI portal





scientific article; zbMATH DE number 936852
Language Label Description Also known as
English
On initial conditions for the convergence of simultaneous root finding methods
scientific article; zbMATH DE number 936852

    Statements

    On initial conditions for the convergence of simultaneous root finding methods (English)
    0 references
    0 references
    25 May 1997
    0 references
    This paper addresses the convergence of a number of numerical methods for the simultaneous approximation of all complex roots of a polynomial. The theorems involve only the polynomial degree and the initial approximations to the roots. The convergence theorems apply to the Weierstrass-Dichov, the Börsch-Supan-Nourein, the Maehly-Ehrlich and the square root method in ordinary complex arithmetic and to the Weierstrass interval, the Gargantini-Henrici, the Börsch-Supan-like interval, the square root interval and the Halley-like interval method in complex interval arithmetic.
    0 references
    polynomial roots
    0 references
    simultaneous rootfinding
    0 references
    Weierstrass-Dochev method
    0 references
    Börsch-Supan-Nourein method
    0 references
    Maehly-Ehrlich method
    0 references
    Gargantini-Henrici interval method
    0 references
    Weierstrass interval method
    0 references
    Börsch-Supan interval method
    0 references
    square root interval method
    0 references
    convergence
    0 references
    complex roots
    0 references
    polynomial
    0 references
    square root method
    0 references
    Halley-like interval method
    0 references
    complex interval arithmetic
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references