Sums with convolution of Dirichlet characters (Q1946760)

From MaRDI portal





scientific article
Language Label Description Also known as
English
Sums with convolution of Dirichlet characters
scientific article

    Statements

    Sums with convolution of Dirichlet characters (English)
    0 references
    0 references
    15 April 2013
    0 references
    Let \(\chi_1\) and \(\chi_2\) be primitive Dirichlet characters with conductors \(q_1\) and \(q_2\), respectively. Recently, \textit{W. D. Banks} and \textit{I. E. Shparlinski} [Manuscr. Math. 133, No. 1--2, 105--114 (2010; Zbl 1221.11172)] considered the sum \[ S_{\chi_1,\chi_2}(X):=\sum_{ab\leq X}\chi_1(a)\chi_2(b) \] and established upper bounds. In this paper the author proves more precise bounds on \(S_{\chi_1,\chi_2}\). Theorem 1. Let \(\chi_1\), \(\chi_2\), \(q_1\) and \(q_2\) as above. If \(q_1\leq q_2\) and \(T>1\) then for every \(\varepsilon >0\) one has \[ \sum_{0<xy\leq T}\chi_1(x)\chi_2(y)\ll\begin{cases} T^{2/3}(q_1q_2)^{1/9+\varepsilon} &\text{if}\;(q_1q_2)^{1/3}\leq T\leq q_1^{4/3}q_2^{1/3},\\ T^{3/4}q_2^{1/12+\varepsilon} &\text{if}\;q_1^{4/3}q_2^{1/3}\leq T, \end{cases}\tag{1} \] \[ \sum_{0<xy\leq T}\chi_1(x)\chi_2(y)\ll\begin{cases} T^{1/2}(q_1q_2)^{3/16+\varepsilon}\quad &\text{if}\;(q_1q_2)^{3/8}\leq T\leq q_1^{9/8}q_2^{3/8},\\ T^{2/3}q_2^{1/8+\varepsilon} &\text{if}\;q_1^{9/8}q_2^{3/8}\leq T, \end{cases}\tag{2} \] where the constant implied by \(\ll\) depends only on \(\varepsilon\).
    0 references
    character sum
    0 references
    Burgess' inequality
    0 references

    Identifiers