A variational principle for eigenvalues of pencils of Hermitian matrices (Q1969515)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A variational principle for eigenvalues of pencils of Hermitian matrices |
scientific article; zbMATH DE number 1416519
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A variational principle for eigenvalues of pencils of Hermitian matrices |
scientific article; zbMATH DE number 1416519 |
Statements
A variational principle for eigenvalues of pencils of Hermitian matrices (English)
0 references
4 November 2001
0 references
If \(A\) and \(M\) are Hermitian matrices and \(\lambda\) is a complex number, \(\lambda\) is called an eigenvalue of the pair \((A,B)\) if \(\text{det}(A-\lambda B)= 0\). The authors study such eigenvalues of Hermitian pairs \((A,B)\).
0 references
variational principle
0 references
eigenvalues of pencils of Hermitian matrices
0 references
Hermitian pairs
0 references
0 references
0.9081722
0 references
0.90458053
0 references
0.8950018
0 references
0.89398056
0 references
0.8928913
0 references
0.8924305
0 references
0.88819844
0 references