Tensor product weight modules for the mirror Heisenberg-Virasoro algebra (Q2065620)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Tensor product weight modules for the mirror Heisenberg-Virasoro algebra |
scientific article |
Statements
Tensor product weight modules for the mirror Heisenberg-Virasoro algebra (English)
0 references
12 January 2022
0 references
The mirror-twisted Heisenberg--Virasoro algebra \(\mathcal{D}\) is a Lie algebra with basis \(\{d_m, h_r,{\mathbf{c}},{\mathbf{l}}: m\in\mathbb{Z}, r\in \frac{1}{2}+\mathbb{Z}\}\) defined by the following commutation relations: \([d_m, d_n]=(m-n)d_{m+n}+\frac{m^3-m}{12}{\delta}_{m+n, 0}{{\mathbf{c}}}\), \([d_m, h_r]=-rh_{m+r}\), \([h_r, h_s]=r{\delta}_{r+s, 0}{\mathbf{l}}\), \([{\mathbf{c}},\mathcal{D}]=[{\mathbf{l}},\mathcal{D}]=0\) for \(m,n\in\mathbb{Z}, r,s\in \frac{1}{2}+\mathbb{Z}\). D. Gao and K. Zhao study irreducible weight modules with infinite-dimensional weight spaces over the mirror-twisted Heisenberg-Virasoro algebra \(\mathcal{D}\). The necessary and sufficient conditions for the tensor products of irreducible highest weight modules and irreducible modules of intermediates series over \(\mathcal{D}\) to be irreducible are determined by using ``shifting technique'' (page 8), leading to new irreducible weight modules over \(\mathcal{D}\). This leads to the main theorem (Theorem 3.11, page 12): Let \(c,h,l,\alpha,\beta \in\mathbb{C},\gamma\in\mathbb{C}^*\). If \(l=0\), then \(L(c,h,l)\otimes A'(\alpha,\beta)^{\mathcal{D}}\) is an irreducible \(\mathcal{D}\)-module if and only if \(L_{\mathcal{V}}(c,h)\otimes A'(\alpha,\beta)\) is an irreducible \(\mathcal{V}\)-module. Furthermore, \(L(c,h,l)\otimes A(\alpha,\beta,\gamma)\) is irreducible. If \(l\ne0\), then \(L(c,h,l)\otimes A'(\alpha,\beta)^{\mathcal{D}}\) is an irreducible \(\mathcal{D}\)-module if and only if \(L_{\mathcal{V}}(c-1,h-\frac{1}{16})\otimes A'(\alpha,\beta)\) is an irreducible \(\mathcal{V}\)-module. Moreover, \(L(c,h,l)\otimes A(\alpha,\beta,\gamma)\) is irreducible if and only if \((\rho_n(Q_1),\rho_n(Q_2))\not= (0,0)\) for all \(n\in \frac{1}{2}\mathbb{Z}\), where \(Q_1,Q_2\in\mathcal{U}(\mathcal{D}^-)\). Next, the authors show that any two such tensor products are isomorphic if and only if the corresponding highest weight modules and modules of intermediate series are isomorphic (Theorem 4.4, page 15). They also discuss submodules of the tensor product module when it is not irreducible.
0 references
mirror Heisenberg-Virasoro algebra
0 references
tensor product
0 references
highest weight module
0 references
module of intermediate series
0 references
irreducible module
0 references
0 references
0 references
0 references
0 references