Le probléme de Riemann-Hilbert sur une variété analytique complexe (Q2533432)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Le probléme de Riemann-Hilbert sur une variété analytique complexe |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Le probléme de Riemann-Hilbert sur une variété analytique complexe |
scientific article |
Statements
Le probléme de Riemann-Hilbert sur une variété analytique complexe (English)
0 references
1969
0 references
The Riemann-Hilbert problem for a complex manifold \(V\) is the following: Let \(A\) be an analytic subset of \(V\) of codimension one at each of its points and \(\chi \) be a representation of \(\Pi_1(V-A)\) into the linear group \(\mathrm{GL}(n,\mathbb C)\). Does there exists a Pfaffian system of Fuchs type whose monodromy is the class of the representation \(\chi \)? It is proved that if \(V\) is a contractible Stein manifold and if the irreducible components of \(A\) are without singularities and in general position then the Riemann-Hilbert problem admits a solution.
0 references
Riemann-Hilbert problem
0 references
complex manifold
0 references
contractible Stein manifold
0 references
analytic subset
0 references
Pfaffian system of Fuchs type
0 references
monodromy
0 references
0 references
0.9012406
0 references
0.8987066
0 references
0.8922776
0 references
0.8919229
0 references
0.8880156
0 references