Multiplicative functions, exponential sums and the law of large numbers (Q266168)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Multiplicative functions, exponential sums and the law of large numbers |
scientific article; zbMATH DE number 6567945
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Multiplicative functions, exponential sums and the law of large numbers |
scientific article; zbMATH DE number 6567945 |
Statements
Multiplicative functions, exponential sums and the law of large numbers (English)
0 references
13 April 2016
0 references
nonnegative multiplicative function
0 references
Halberstam-Richert upper bound
0 references
short sum
0 references
arithmetic progression
0 references
exponential sum
0 references
strong law of large numbers
0 references
multiplicative weights
0 references
multiplicative coefficients
0 references
Let \(f\) be a nonnegative multiplicative arithmetic function. For such function \(f\) and an arbitrary real \(x\geqslant 1\), let NEWLINE\[NEWLINE M_f(x)=\sum\limits_{n\leqslant x}f(n),\;L_f(x)=\sum\limits_{n\leqslant x}\frac{f(n)}{n}, \;E_f(x)=\prod\limits_{p\leqslant x}\Big(1+\frac{1}{p}\,\Big), NEWLINE\]NEWLINE where \(p\) denotes a prime number.NEWLINENEWLINEAccording to the well-known Halberstam-Richert upper bound, the estimate NEWLINE\[NEWLINE M_f(x)\leqslant (A+B+1)\,\frac{x}{\log x}\,L_f(x) NEWLINE\]NEWLINE holds under the following conditions: NEWLINE\[NEWLINE \sum\limits_{p\leqslant y}f(p)\log p\leqslant Ay,\;\sum\limits_{p}\sum\limits_{r=2}^\infty\frac{f(p^r)\log p^r}{p^r}\leqslant B. NEWLINE\]NEWLINE The author introduces a class of multiplicative nonnegative arithmetic functions satisfying the last two conditions and such that: NEWLINE\[NEWLINE L_f(x)\asymp E_f(x) ,\;M_f(x)\asymp \frac{x}{\log x}\,L_f(x).NEWLINE\]NEWLINE The obtained asymptotic relations are used to obtain new results for short sums of multiplicative functions over arithmetic progressions, for exponential sums with multiplicative coefficients and for the strong law of large numbers with multiplicative weights.
0 references