Multiplicative functions, exponential sums and the law of large numbers (Q266168)

From MaRDI portal





scientific article; zbMATH DE number 6567945
Language Label Description Also known as
English
Multiplicative functions, exponential sums and the law of large numbers
scientific article; zbMATH DE number 6567945

    Statements

    Multiplicative functions, exponential sums and the law of large numbers (English)
    0 references
    0 references
    13 April 2016
    0 references
    nonnegative multiplicative function
    0 references
    Halberstam-Richert upper bound
    0 references
    short sum
    0 references
    arithmetic progression
    0 references
    exponential sum
    0 references
    strong law of large numbers
    0 references
    multiplicative weights
    0 references
    multiplicative coefficients
    0 references
    Let \(f\) be a nonnegative multiplicative arithmetic function. For such function \(f\) and an arbitrary real \(x\geqslant 1\), let NEWLINE\[NEWLINE M_f(x)=\sum\limits_{n\leqslant x}f(n),\;L_f(x)=\sum\limits_{n\leqslant x}\frac{f(n)}{n}, \;E_f(x)=\prod\limits_{p\leqslant x}\Big(1+\frac{1}{p}\,\Big), NEWLINE\]NEWLINE where \(p\) denotes a prime number.NEWLINENEWLINEAccording to the well-known Halberstam-Richert upper bound, the estimate NEWLINE\[NEWLINE M_f(x)\leqslant (A+B+1)\,\frac{x}{\log x}\,L_f(x) NEWLINE\]NEWLINE holds under the following conditions: NEWLINE\[NEWLINE \sum\limits_{p\leqslant y}f(p)\log p\leqslant Ay,\;\sum\limits_{p}\sum\limits_{r=2}^\infty\frac{f(p^r)\log p^r}{p^r}\leqslant B. NEWLINE\]NEWLINE The author introduces a class of multiplicative nonnegative arithmetic functions satisfying the last two conditions and such that: NEWLINE\[NEWLINE L_f(x)\asymp E_f(x) ,\;M_f(x)\asymp \frac{x}{\log x}\,L_f(x).NEWLINE\]NEWLINE The obtained asymptotic relations are used to obtain new results for short sums of multiplicative functions over arithmetic progressions, for exponential sums with multiplicative coefficients and for the strong law of large numbers with multiplicative weights.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references