Approximation orders for natural splines in arbitrary dimensions (Q2701559)

From MaRDI portal





scientific article
Language Label Description Also known as
English
Approximation orders for natural splines in arbitrary dimensions
scientific article

    Statements

    0 references
    0 references
    19 February 2001
    0 references
    multivariate interpolation
    0 references
    Approximation orders for natural splines in arbitrary dimensions (English)
    0 references
    Let \(\Omega\subset \mathbb{R}^n\) be a bounded domain with Lipschitz boundary, and let \(m\), \(k\in\mathbb{N}_0\), \(p\in [2,\infty]\) be such that \(m>n/2\) and \(H^m(\Omega)\subset W^{k,p}(\Omega)\) hold. The aim of the authors is to improve a result by \textit{J. Duchon} [RAIRO, Anal. Numer. 12, 325-334 (1978; Zbl 0403.41003)] concerning the minimal norm interpolant of a function belonging to the Beppo Levi space \(BL^m(\Omega)\). It is shown that there exist constants \(C\) and \(h_0>0\) having the following property: for any collection \(X=\{x_1, \dots, x_N\} \subset\Omega\) of interpolation points containing a \({\mathcal P}^n_{m-1}\)-unisolvent subset and satisfying NEWLINE\[NEWLINEh=\sup_{x\in\Omega} \inf_{x_i\in X} \|x-x_i\|_2\leq h_0,NEWLINE\]NEWLINE and for all \(f\in BL^{2m} (\Omega)\) with \(\partial^\alpha f=0\) on \(\partial\Omega\) for \(|\alpha |=m, \dots,2m-1\), the function \(s_f \in BL^m (\mathbb{R}^n)\) that minimizes \(\|s_f\|_{BL^m (\mathbb{R}^n)}\) and interpolates \(s_f(x_i)= f(x_i)\), \(i=1,\dots,N\), satisfies \(\sum_{|\alpha |=k} \|\partial^\alpha (f-s_f) \|_{L^p (\Omega)}\leq Ch^{2m-k-n/2+n/p} \|f\|_{BL^{2m} (\Omega)}\).
    0 references

    Identifiers