On inequalities of the Landau-Kolmogorov-Hörmander type on a segment and the real line (Q2730511)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On inequalities of the Landau-Kolmogorov-Hörmander type on a segment and the real line |
scientific article; zbMATH DE number 1631382
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On inequalities of the Landau-Kolmogorov-Hörmander type on a segment and the real line |
scientific article; zbMATH DE number 1631382 |
Statements
8 August 2001
0 references
Landau-Kolmogorov inequality
0 references
Hörmander inequality
0 references
spline approximation
0 references
0.9200522
0 references
0.9079344
0 references
0.8861026
0 references
On inequalities of the Landau-Kolmogorov-Hörmander type on a segment and the real line (English)
0 references
Let \(x(t)\) be a real-valued function on \([-1,1 ]\) such that \(x^{(r)}\in L_\infty\), let \(E_0(x)_\infty\) be the best uniform approximation of \(x\) by a constant, and let \(x_\pm(t)=\max\{\pm x(t),0\}\). Suppose that for some given constants \(A,\alpha ,\beta >0\) NEWLINE\[NEWLINE E_0(x)_\infty \leq A, \quad \|x^{(r)}_+\|_{[-1,1 ]}\leq \alpha , \quad \|x^{(r)}_-\|_{[-1,1 ]}\leq \beta NEWLINE\]NEWLINE (\(L_\infty\)-norms). The author gives an exact estimate for \(\|x^{(k)}\|_{[-a,a ]}\) on a subinterval \([-a,a ]\subset [-1,1 ]\), \(k=1,2,\ldots ,r-1\). The method is based on spline approximations.
0 references