Explicit formulas for reproducing kernels of generalized Bargmann spaces of \({\mathbb{C}}^n\) (Q2737993)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Explicit formulas for reproducing kernels of generalized Bargmann spaces on Cn |
scientific article; zbMATH DE number 1639173
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Explicit formulas for reproducing kernels of generalized Bargmann spaces of \({\mathbb{C}}^n\) |
scientific article; zbMATH DE number 1639173 |
Statements
30 August 2001
0 references
Bargmann-Fock space
0 references
reproducing kernel
0 references
0 references
0.9735346
0 references
0.92931056
0 references
0.9140608
0 references
0.9002738
0 references
0.8980252
0 references
0.89152557
0 references
0.89015514
0 references
0.8898111
0 references
0.8874092
0 references
Explicit formulas for reproducing kernels of generalized Bargmann spaces of \({\mathbb{C}}^n\) (English)
0 references
The authors introduce a generalized Bargmann space of eigenfunctions of the generalized Laplacian \(\widetilde{\Delta}=-\sum_{j=1}^n \frac{\partial^2}{\partial z_j\partial {\overline{z_j}}}+\sum_{j=1}^n{\overline{z_j}}\frac{\partial}{\partial{\overline{z_j}}}\) on \({\mathbb C}^n\) as NEWLINE\[NEWLINEA^2_m({\mathbb C}^n)= \biggl\{f:\widetilde{\Delta}f=m f, \int |f(z)|^2e^{-|z|^2} d\lambda(z)<\infty\biggr\},NEWLINE\]NEWLINE and show that the reproducing kernels for these spaces are NEWLINE\[NEWLINEK_m(z,w)= e^{\langle zw\rangle}L^{n-1}_m(|z-w|^2),NEWLINE\]NEWLINE where \(L^{n-1}_m\) are Laguerre polynomials.
0 references