Explicit formulas for reproducing kernels of generalized Bargmann spaces of \({\mathbb{C}}^n\) (Q2737993)

From MaRDI portal





scientific article; zbMATH DE number 1639173
Language Label Description Also known as
English
Explicit formulas for reproducing kernels of generalized Bargmann spaces of \({\mathbb{C}}^n\)
scientific article; zbMATH DE number 1639173

    Statements

    0 references
    0 references
    0 references
    30 August 2001
    0 references
    Bargmann-Fock space
    0 references
    reproducing kernel
    0 references
    Explicit formulas for reproducing kernels of generalized Bargmann spaces of \({\mathbb{C}}^n\) (English)
    0 references
    The authors introduce a generalized Bargmann space of eigenfunctions of the generalized Laplacian \(\widetilde{\Delta}=-\sum_{j=1}^n \frac{\partial^2}{\partial z_j\partial {\overline{z_j}}}+\sum_{j=1}^n{\overline{z_j}}\frac{\partial}{\partial{\overline{z_j}}}\) on \({\mathbb C}^n\) as NEWLINE\[NEWLINEA^2_m({\mathbb C}^n)= \biggl\{f:\widetilde{\Delta}f=m f, \int |f(z)|^2e^{-|z|^2} d\lambda(z)<\infty\biggr\},NEWLINE\]NEWLINE and show that the reproducing kernels for these spaces are NEWLINE\[NEWLINEK_m(z,w)= e^{\langle zw\rangle}L^{n-1}_m(|z-w|^2),NEWLINE\]NEWLINE where \(L^{n-1}_m\) are Laguerre polynomials.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references