On the rate of convergence of empirical distribution functions in \(AR(1)\) models (Q2739833)

From MaRDI portal





scientific article; zbMATH DE number 1646310
Language Label Description Also known as
English
On the rate of convergence of empirical distribution functions in \(AR(1)\) models
scientific article; zbMATH DE number 1646310

    Statements

    0 references
    16 September 2001
    0 references
    residual distribution
    0 references
    autoregression
    0 references
    nonparametric estimation
    0 references
    uniform confidence intervals
    0 references
    On the rate of convergence of empirical distribution functions in \(AR(1)\) models (English)
    0 references
    The author considers an \(AR(1)\) process \(U_k=\beta U_{k-1}+\varepsilon_k\), where \(\varepsilon_k\) are i.i.d. with d.f. \(G\). The unknown \(G\) is estimated by the empirical distribution function of the residuals \(G_n\). The author derives an upper bound for NEWLINE\[NEWLINE\Pr\{\sup_x\sqrt{n}|G_n(x)-G(x)|>\varepsilon\},NEWLINE\]NEWLINE for the case when NEWLINE\[NEWLINE\sup_x|G''(x)|<\infty,\quad E\varepsilon_n^4<\infty,\quad |\beta|\leq\Lambda<1.NEWLINE\]
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references