Estimates for the \(\bar\partial\)-Neumann problem in the Sobolev topology on \(Z(q)\) domains (Q2747328)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Estimates for the \(\bar\partial\)-Neumann problem in the Sobolev topology on \(Z(q)\) domains |
scientific article; zbMATH DE number 1657525
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Estimates for the \(\bar\partial\)-Neumann problem in the Sobolev topology on \(Z(q)\) domains |
scientific article; zbMATH DE number 1657525 |
Statements
19 February 2002
0 references
conditions \(Z(q)\)
0 references
\(\overline\partial\)-Neumann problem
0 references
Sobolev topology
0 references
0.90176636
0 references
0.8999851
0 references
0.8981636
0 references
0.89216065
0 references
0.89154774
0 references
0.89152586
0 references
0.8891618
0 references
Estimates for the \(\bar\partial\)-Neumann problem in the Sobolev topology on \(Z(q)\) domains (English)
0 references
We quote the authors' abstract: This paper is the continuation of [\textit{L. Fontana}, \textit{S. Krantz} and \textit{M. Peloso}, Indiana Univ. Math. J. 48, No. 1, 275-293 (1999; Zbl 0994.35099)], where the \(\overline \partial\)-Neumann problem in the Sobolev topology is formulated and studied on pseudoconvex domains in \(\mathbb{C}^n\).NEWLINENEWLINENEWLINEIn this paper we study the \(\overline \partial\)-Neumann problem in the topology of \(W^1\) on a domain of the so-called class \(Z(q)\). The appropriate non-coercive condition on the corresponding bilinear form \(Q\) is proved. Optimal estimates for the \(\overline \partial\)-Neumann problem are then derived. The result is a new canonical solution for the \(\overline \partial\)-problem giving best possible estimates and a new Hodge theory for the Cauchy-Riemann complex.
0 references