The de la Vallée Poussin mean and polynomial approximation for exponential weight (Q275641)

From MaRDI portal





scientific article; zbMATH DE number 6573803
Language Label Description Also known as
English
The de la Vallée Poussin mean and polynomial approximation for exponential weight
scientific article; zbMATH DE number 6573803

    Statements

    The de la Vallée Poussin mean and polynomial approximation for exponential weight (English)
    0 references
    26 April 2016
    0 references
    Summary: We study \(L^p\) boundedness of the de la Vallée Poussin means \(v_n(f)\) for exponential weight \(w(x) = \exp(- Q(x))\) on \(\mathbb{R}\). Our main result is \(\|v_n(f)(w / T^{1 / 4})\|_{L^p(\mathbb{R})} \leq C \| f w \|_{L^p(\mathbb{R})},\) for every \(n \in \mathbb{N}\) and every \(1 \leq p \leq \infty\), where \(T(x) = x Q'(x) / Q(x)\). As an application, we obtain \(\lim_{n \to \infty} \|(f - v_n(f)) w / T^{1 /4}\|_{L^p(\mathbb{R})} = 0\) for \(f w \in L^p(\mathbb{R})\).
    0 references
    de la Vallée Poussin means
    0 references
    polynomial approximation
    0 references
    0 references
    0 references
    0 references

    Identifiers