The de la Vallée Poussin mean and polynomial approximation for exponential weight (Q275641)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The de la Vallée Poussin mean and polynomial approximation for exponential weight |
scientific article; zbMATH DE number 6573803
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The de la Vallée Poussin mean and polynomial approximation for exponential weight |
scientific article; zbMATH DE number 6573803 |
Statements
The de la Vallée Poussin mean and polynomial approximation for exponential weight (English)
0 references
26 April 2016
0 references
Summary: We study \(L^p\) boundedness of the de la Vallée Poussin means \(v_n(f)\) for exponential weight \(w(x) = \exp(- Q(x))\) on \(\mathbb{R}\). Our main result is \(\|v_n(f)(w / T^{1 / 4})\|_{L^p(\mathbb{R})} \leq C \| f w \|_{L^p(\mathbb{R})},\) for every \(n \in \mathbb{N}\) and every \(1 \leq p \leq \infty\), where \(T(x) = x Q'(x) / Q(x)\). As an application, we obtain \(\lim_{n \to \infty} \|(f - v_n(f)) w / T^{1 /4}\|_{L^p(\mathbb{R})} = 0\) for \(f w \in L^p(\mathbb{R})\).
0 references
de la Vallée Poussin means
0 references
polynomial approximation
0 references
0 references
0 references