Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations. (Q2781528)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations. |
scientific article; zbMATH DE number 1721529
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations. |
scientific article; zbMATH DE number 1721529 |
Statements
20 March 2002
0 references
Frenkel-Kontorova models
0 references
min-plus integral eigenvalue problem
0 references
convergence
0 references
solid-state physics
0 references
homogenization
0 references
Hamilton-Jacobi equations
0 references
0 references
Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations. (English)
0 references
The paper is concerned with a min-plus integral eigenvalue problem. The author proves that the unique eigenvalue of this problem depends continuously on parameters involved in the kernel defining the problem. A convergence analysis is given for the numerical method introduced by \textit{W. Chou} and \textit{R. B. Griffiths} [Ground states of one-dimensional systems using effective potentials. Phys. Rev. B 34, 6219--6234 (1986)] to compute this eigenvalue. The author illustrates obtained results in two contexts: Frenkel-Kontorova models in solid-state physics, and homogenization of Hamilton-Jacobi equations.
0 references