Generalized Hilbert operators on Bergman and Dirichlet spaces of analytic functions (Q2787107)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Generalized Hilbert operators on Bergman and Dirichlet spaces of analytic functions |
scientific article; zbMATH DE number 6545369
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Generalized Hilbert operators on Bergman and Dirichlet spaces of analytic functions |
scientific article; zbMATH DE number 6545369 |
Statements
24 February 2016
0 references
generalized Hilbert operators
0 references
integral operators
0 references
Bergman spaces
0 references
Dirichlet spaces
0 references
0.9500774
0 references
0.9370232
0 references
0.92545736
0 references
0.92507625
0 references
Generalized Hilbert operators on Bergman and Dirichlet spaces of analytic functions (English)
0 references
The generalized Hilbert operator \({\mathcal H}_{a,b}\) is defined by NEWLINE\[NEWLINE ({\mathcal H}_{a,b}f)(z)=\frac{\Gamma(a+1)}{\Gamma(b+1)}\int_0^1\frac{f(t)(1-t)^b}{(1-tz)^{a+1}}dt, NEWLINE\]NEWLINE where \(f\) is an analytic function in the unit disk. The authors of the article under review find conditions on \(a\) and \(b\), under which \({\mathcal H}_{a,b}\) is a bounded operator on Dirichlet-type spaces and on Bergman spaces.
0 references