Singular integrals with angular integrability (Q2809196)

From MaRDI portal





scientific article; zbMATH DE number 6586345
Language Label Description Also known as
English
Singular integrals with angular integrability
scientific article; zbMATH DE number 6586345

    Statements

    Singular integrals with angular integrability (English)
    0 references
    0 references
    0 references
    27 May 2016
    0 references
    singular integrals
    0 references
    angular integrability
    0 references
    From the authors' introduction: ``We consider singular integral operators NEWLINE\[NEWLINETf(x)=\mathrm{p.v.}\int_{\mathbb R^n}f(y)K(x-y)\,dy,NEWLINE\]NEWLINE where the kernel \(K\) satisfies the following conditions: NEWLINE\[NEWLINE | y |^n | K(y) | \leq C, \quad | y |^{n+1} | \nabla K(y) | \leq C, \quad | \widehat{K} | \leq C. NEWLINE\]NEWLINE ...\,[The] mixed radial-angular spaces have been successfully used in recent years to improve several results in the framework of partial differential equations.''NEWLINENEWLINEThe Lebesgue norms with different integrability in radial and angular directions are defined by NEWLINE\[NEWLINE \| f \|_{L^p_{ | x |} L^q_{\theta}} := \left( \int_0^{\infty} \| f (\rho\,\cdot) \|_{L^q({\mathbb S}^{n-1})} \rho^{n-1} \, d\rho \right)^{1/p}. NEWLINE\]NEWLINE \textit{A. Córdoba} [Adv. Math. 290, 208--235 (2016; Zbl 1343.42011)] proved the \(L^p_{ | x |} L^2_{\theta}\) boundedness of \(T\). The authors prove the following weighted estimate. Let \(n \geq 2\), \(1<p<\infty\), \(1<q<\infty\) and \(-n/p<\alpha<n-n/p\). Then NEWLINE\[NEWLINE \| | x |^{\alpha} T f \|_{L^p_ { | x |} L^q_{\theta}} \leq C \| | x |^{\alpha} f \|_{L^p_{ | x |} L^q_{\theta}}. NEWLINE\]
    0 references

    Identifiers