Singular integrals with angular integrability (Q2809196)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Singular integrals with angular integrability |
scientific article; zbMATH DE number 6586345
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Singular integrals with angular integrability |
scientific article; zbMATH DE number 6586345 |
Statements
Singular integrals with angular integrability (English)
0 references
27 May 2016
0 references
singular integrals
0 references
angular integrability
0 references
0 references
0 references
0.7859083
0 references
0.75624406
0 references
0.7351281
0 references
0.73330814
0 references
0.73124063
0 references
0.7203448
0 references
0.71993613
0 references
0.7175671
0 references
From the authors' introduction: ``We consider singular integral operators NEWLINE\[NEWLINETf(x)=\mathrm{p.v.}\int_{\mathbb R^n}f(y)K(x-y)\,dy,NEWLINE\]NEWLINE where the kernel \(K\) satisfies the following conditions: NEWLINE\[NEWLINE | y |^n | K(y) | \leq C, \quad | y |^{n+1} | \nabla K(y) | \leq C, \quad | \widehat{K} | \leq C. NEWLINE\]NEWLINE ...\,[The] mixed radial-angular spaces have been successfully used in recent years to improve several results in the framework of partial differential equations.''NEWLINENEWLINEThe Lebesgue norms with different integrability in radial and angular directions are defined by NEWLINE\[NEWLINE \| f \|_{L^p_{ | x |} L^q_{\theta}} := \left( \int_0^{\infty} \| f (\rho\,\cdot) \|_{L^q({\mathbb S}^{n-1})} \rho^{n-1} \, d\rho \right)^{1/p}. NEWLINE\]NEWLINE \textit{A. Córdoba} [Adv. Math. 290, 208--235 (2016; Zbl 1343.42011)] proved the \(L^p_{ | x |} L^2_{\theta}\) boundedness of \(T\). The authors prove the following weighted estimate. Let \(n \geq 2\), \(1<p<\infty\), \(1<q<\infty\) and \(-n/p<\alpha<n-n/p\). Then NEWLINE\[NEWLINE \| | x |^{\alpha} T f \|_{L^p_ { | x |} L^q_{\theta}} \leq C \| | x |^{\alpha} f \|_{L^p_{ | x |} L^q_{\theta}}. NEWLINE\]
0 references