Primes in explicit short intervals on RH (Q2810682)

From MaRDI portal





scientific article; zbMATH DE number 6589284
Language Label Description Also known as
English
Primes in explicit short intervals on RH
scientific article; zbMATH DE number 6589284

    Statements

    Primes in explicit short intervals on RH (English)
    0 references
    0 references
    0 references
    0 references
    3 June 2016
    0 references
    primes
    0 references
    short intervals
    0 references
    Riemann hypothesis
    0 references
    The authors prove the following theorem: Assume the Riemann hypothesis. Let \(x\geq 2\) and let \(c:=\frac1{2}+\frac{2}{\log x}\). Then there is a prime in the interval \((x-c\sqrt{x} \log x,x+c\sqrt{x} \log x)\) and there are at least \(\sqrt{x}\) primes in \((x-(c+1)\sqrt{x} \log x,x+(c+1)\sqrt{x} \log x)\).
    0 references

    Identifiers