An explicit construction of optimal order quasi-Monte Carlo rules for smooth integrands (Q2817786)

From MaRDI portal





scientific article; zbMATH DE number 6621954
Language Label Description Also known as
English
An explicit construction of optimal order quasi-Monte Carlo rules for smooth integrands
scientific article; zbMATH DE number 6621954

    Statements

    0 references
    0 references
    0 references
    2 September 2016
    0 references
    quasi-Monte Carlo
    0 references
    numerical integration
    0 references
    higher-order digital nets
    0 references
    Sobolev space
    0 references
    kernel Hilbert space
    0 references
    worst case error
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    An explicit construction of optimal order quasi-Monte Carlo rules for smooth integrands (English)
    0 references
    The authors consider quasi-Monte Carlo (QMC) rules for numerical integration in a reproducing kernel Hilbert space. An explicit construction of an optimal QMC rule is presented. The approach depends on digital nets and the construction of Chen and Skriganov. The main result gives an upper bound for the worst case error which is of the order NEWLINE\[NEWLINEO(\frac{(\log N)^{\frac{s-1}{2}}}{N^{\alpha}}),NEWLINE\]NEWLINE where \(s\) is the dimension and \(\alpha\) the order of smoothness.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references