The backward Euler anisotropic a posteriori error analysis for parabolic integro-differential equations (Q2821183)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The backward Euler anisotropic a posteriori error analysis for parabolic integro-differential equations |
scientific article; zbMATH DE number 6628229
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The backward Euler anisotropic a posteriori error analysis for parabolic integro-differential equations |
scientific article; zbMATH DE number 6628229 |
Statements
16 September 2016
0 references
parabolic integro-differential equation
0 references
finite elements method
0 references
Euler implicit approximation
0 references
a posteriori error
0 references
0 references
0 references
0 references
0 references
0 references
The backward Euler anisotropic a posteriori error analysis for parabolic integro-differential equations (English)
0 references
This paper report about the a posteriori error analysis of the approximate solutions of the initial value and boundary value problem for parabolic integro-differential equation NEWLINENEWLINE\[NEWLINE u_{t}(x,t)+ Au(x,t)= \int_{o}^{t}{B}(t,s)u(x,s))ds + f(x,t), \qquad (x,t)\in\Omega \times(0,T),NEWLINE\]NEWLINE NEWLINEwhere \(\Omega\in \mathbb{R}^{2}\), \({A}u =-\nabla(A\nabla u)\), \({B}u =-\nabla(B(t,s)\nabla u)\). The discretization by space variables use the finite elements method and implicit Euler method for the variable \(t\). For the Volterra integral term it is used the linear approximation. Analysis of the error consist to construct two estimators. The numerical results are given considering the particulary case \(A = B = I\).
0 references