The backward Euler anisotropic a posteriori error analysis for parabolic integro-differential equations (Q2821183)

From MaRDI portal





scientific article; zbMATH DE number 6628229
Language Label Description Also known as
English
The backward Euler anisotropic a posteriori error analysis for parabolic integro-differential equations
scientific article; zbMATH DE number 6628229

    Statements

    16 September 2016
    0 references
    parabolic integro-differential equation
    0 references
    finite elements method
    0 references
    Euler implicit approximation
    0 references
    a posteriori error
    0 references
    The backward Euler anisotropic a posteriori error analysis for parabolic integro-differential equations (English)
    0 references
    This paper report about the a posteriori error analysis of the approximate solutions of the initial value and boundary value problem for parabolic integro-differential equation NEWLINENEWLINE\[NEWLINE u_{t}(x,t)+ Au(x,t)= \int_{o}^{t}{B}(t,s)u(x,s))ds + f(x,t), \qquad (x,t)\in\Omega \times(0,T),NEWLINE\]NEWLINE NEWLINEwhere \(\Omega\in \mathbb{R}^{2}\), \({A}u =-\nabla(A\nabla u)\), \({B}u =-\nabla(B(t,s)\nabla u)\). The discretization by space variables use the finite elements method and implicit Euler method for the variable \(t\). For the Volterra integral term it is used the linear approximation. Analysis of the error consist to construct two estimators. The numerical results are given considering the particulary case \(A = B = I\).
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references