Effective Ratner theorem for \(\mathrm{SL}(2,\mathbb{R})\ltimes\mathbb{R}^2\) and gaps in \(\sqrt{n}\;\mathrm{modulo}\,1\) (Q2822139)

From MaRDI portal





scientific article; zbMATH DE number 6630154
Language Label Description Also known as
English
Effective Ratner theorem for \(\mathrm{SL}(2,\mathbb{R})\ltimes\mathbb{R}^2\) and gaps in \(\sqrt{n}\;\mathrm{modulo}\,1\)
scientific article; zbMATH DE number 6630154

    Statements

    0 references
    0 references
    27 September 2016
    0 references
    horocycle flow
    0 references
    exponential sum
    0 references
    Effective Ratner theorem for \(\mathrm{SL}(2,\mathbb{R})\ltimes\mathbb{R}^2\) and gaps in \(\sqrt{n}\;\mathrm{modulo}\,1\) (English)
    0 references
    \textit{N. D. Elkies} and \textit{C. T. McMullen} [Duke Math. J. 123, No. 1, 95--139 (2004; Zbl 1063.11020)] linked the unusual distribution of gaps in the sequence \(\{\sqrt{n} \text{ mod } 1\}\) (first noticed by numerical experiments in [\textit{M. D. Boshernitzan}, J. Anal. Math. 62, 225--240 (1994; Zbl 0804.11046)]) to the equidistribution of a one-parameter unipotent flow on the space of two-dimensional affine unimodular lattices \(\mathrm{SL}(2, \mathbb R) \ltimes \mathbb R^2/ \mathrm{SL}(2, \mathbb Z) \ltimes \mathbb Z^2\). They posed the question of whether this equidistribution could be made effective. Via exponential sum estimates, the authors effectivize this equidistribution. They observe that there are possible optimizations for this effectifization.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references