Effective Ratner theorem for \(\mathrm{SL}(2,\mathbb{R})\ltimes\mathbb{R}^2\) and gaps in \(\sqrt{n}\;\mathrm{modulo}\,1\) (Q2822139)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Effective Ratner theorem for \(\mathrm{SL}(2,\mathbb{R})\ltimes\mathbb{R}^2\) and gaps in \(\sqrt{n}\;\mathrm{modulo}\,1\) |
scientific article; zbMATH DE number 6630154
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Effective Ratner theorem for \(\mathrm{SL}(2,\mathbb{R})\ltimes\mathbb{R}^2\) and gaps in \(\sqrt{n}\;\mathrm{modulo}\,1\) |
scientific article; zbMATH DE number 6630154 |
Statements
27 September 2016
0 references
horocycle flow
0 references
exponential sum
0 references
0 references
0 references
Effective Ratner theorem for \(\mathrm{SL}(2,\mathbb{R})\ltimes\mathbb{R}^2\) and gaps in \(\sqrt{n}\;\mathrm{modulo}\,1\) (English)
0 references
\textit{N. D. Elkies} and \textit{C. T. McMullen} [Duke Math. J. 123, No. 1, 95--139 (2004; Zbl 1063.11020)] linked the unusual distribution of gaps in the sequence \(\{\sqrt{n} \text{ mod } 1\}\) (first noticed by numerical experiments in [\textit{M. D. Boshernitzan}, J. Anal. Math. 62, 225--240 (1994; Zbl 0804.11046)]) to the equidistribution of a one-parameter unipotent flow on the space of two-dimensional affine unimodular lattices \(\mathrm{SL}(2, \mathbb R) \ltimes \mathbb R^2/ \mathrm{SL}(2, \mathbb Z) \ltimes \mathbb Z^2\). They posed the question of whether this equidistribution could be made effective. Via exponential sum estimates, the authors effectivize this equidistribution. They observe that there are possible optimizations for this effectifization.
0 references