Dynamics and exact traveling wave solutions of the \((2+1)\)-dimensional Davey-Stewartson equation (Q2858058)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Dynamics and exact traveling wave solutions of the \((2+1)\)-dimensional Davey-Stewartson equation |
scientific article; zbMATH DE number 6229314
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Dynamics and exact traveling wave solutions of the \((2+1)\)-dimensional Davey-Stewartson equation |
scientific article; zbMATH DE number 6229314 |
Statements
19 November 2013
0 references
Davey-Stewartson equation
0 references
bifurcation
0 references
phase portraits
0 references
traveling wave solutions
0 references
0.93890095
0 references
0.9248517
0 references
0.9248401
0 references
0.92210674
0 references
0.91110504
0 references
0.90968883
0 references
Dynamics and exact traveling wave solutions of the \((2+1)\)-dimensional Davey-Stewartson equation (English)
0 references
Consider the system of partial differential equations NEWLINE\[NEWLINE\begin{gathered} iu_t+ c_0 u_{xx}+ u_{yy}- c_1|u|^2u- c_2 uv_x= 0,\\ v_{xx}+ c_3 v_{yy}- (|u|^2)_x= 0,\end{gathered}\tag{\(*\)}NEWLINE\]NEWLINE where \(u: \mathbb{R}^+\times \mathbb{R}^2\to\mathbb{C}\), \(v: \mathbb{R}^+\times \mathbb{R}^2\to \mathbb{R},\;c_0,\dots, c_4\) are real parameters. The author looks for solutions to \((*)\) of the form NEWLINE\[NEWLINEu(t,x,y)= e^{i\theta}U(\xi),\quad v(t,x,y)= V(\xi),\tag{\(**\)}NEWLINE\]NEWLINE with \(\theta= \delta x+\eta y+\omega t\), \(\xi= k(x+\ell y-\lambda t)\), where \(\delta\), \(\eta\), \(\omega\), \(\ell\), and \(\lambda\) are real parameters, \(\lambda= 2(c_0\delta+ \eta\ell)\). Substituting \((**)\) into \((*)\) one get an ODE system having a first integral. Using this property one finally arrives at the autonomous system NEWLINE\[NEWLINE{d\phi\over d\xi}= y,\quad {dy\over d\xi}= {\alpha\over\gamma} \phi+ {\beta\over\gamma} \phi^3.\tag{\(***\)}NEWLINE\]NEWLINE The author applies methods from the qualitative theory of ODEs and exploits the fact that \((***)\) has a first integral to derive explicit expressions for three types of traveling waves to \((*)\).
0 references