Continuity and invariance of the Sacker-Sell spectrum (Q300370)

From MaRDI portal





scientific article; zbMATH DE number 6598717
Language Label Description Also known as
English
Continuity and invariance of the Sacker-Sell spectrum
scientific article; zbMATH DE number 6598717

    Statements

    Continuity and invariance of the Sacker-Sell spectrum (English)
    0 references
    0 references
    0 references
    27 June 2016
    0 references
    This paper is devoted to the study of the exponential dichotomy (ED) spectrum of the linear nonautonomous difference equation \[ x(t+1)=A(t)x(t), \tag{1} \] where \(t\in \mathbb Z\), \(A:\mathbb Z\to [\mathbb R^{d}]\) and \([\mathbb R^d]\) is the space of all linear mapping acting on \(\mathbb R^{d}\). The dichotomy spectrum \(\Sigma(A)\) of (1) is defined as follows: \[ \Sigma(A):=\{\gamma >0 :\;x(t+1)=\gamma^{-1}A(t)x(t)\text{ has no ED}\}. \] The authors introduce some subsets of \(\Sigma(A)\): {\parindent=0.7cm \begin{itemize}\item[--] \(\Sigma_{s}(A):=\{\gamma >0:\;S_{\gamma} \;\text{is not onto}\}\). Here \(S_{\lambda}\) is a linear bounded operator defined by \((S_{\lambda}\phi)(t):=\phi(t+1)-\lambda^{-1}A(t)\phi(t)\); \item[--] \(\Sigma_{F}(A):=\{\gamma >0:\;S_{\gamma} \;\text{is not Fredholm}\}\); \item[--] \(\Sigma_{F_0}(A):=\{\gamma\in \Sigma_{F}(A):\;\text{the index of}\;S_{\gamma}\;\text{is zero}\}\); \item[--] \(\Sigma_{\pi}(A):=\{\gamma >0 :\;S_{\gamma}\;\text{is not bounded below}\}\). \end{itemize}} These spectrum subsets play an important role in the study of the asymptotic behavior of solutions of (1). The results in the paper are new and interesting for experts in the domain of qualitative theory of nonautonomous difference equations.
    0 references
    dichotomy spectrum
    0 references
    exponential dichotomy
    0 references
    nonautonomous hyperbolicity
    0 references
    weighted shift operator
    0 references
    difference equation
    0 references
    robust stability
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references