Non-trivial solutions for nonlocal elliptic problems of Kirchhoff-type (Q313707)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Non-trivial solutions for nonlocal elliptic problems of Kirchhoff-type |
scientific article; zbMATH DE number 6626282
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Non-trivial solutions for nonlocal elliptic problems of Kirchhoff-type |
scientific article; zbMATH DE number 6626282 |
Statements
Non-trivial solutions for nonlocal elliptic problems of Kirchhoff-type (English)
0 references
12 September 2016
0 references
Kirchhoff-type problem
0 references
critical point
0 references
weak solution
0 references
variational methods
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0.96100646
0 references
0.95823294
0 references
0.94512904
0 references
0.94395536
0 references
0 references
0.93865526
0 references
0 references
0.9375186
0 references
The authors are concerned with the Kirchoff-type equation NEWLINE\[NEWLINE K\left(\int_a^b\mid u'(x)\mid^2dx\right)u''=\lambda f(x,u),\quad x\in(a,b) NEWLINE\]NEWLINE with homogeneous Dirichlet boundary conditions. \(\lambda\) is a positive real parameter, \(K: [0,+\infty)\to\mathbb{R}\) is continuous and lower bounded while the nonlinearity \(f\) is \(L^1\)-Carathéodory. Using variational techniques, the authors prove the existence of a weak solution in the Sobolev space \(W_0^{1,2}\) for some values of the parameter \(\lambda\).
0 references