On an extension of Fu-Markham matrix theory result to simple Euclidean Jordan algebras (Q338924)

From MaRDI portal





scientific article; zbMATH DE number 6648460
Language Label Description Also known as
English
On an extension of Fu-Markham matrix theory result to simple Euclidean Jordan algebras
scientific article; zbMATH DE number 6648460

    Statements

    On an extension of Fu-Markham matrix theory result to simple Euclidean Jordan algebras (English)
    0 references
    0 references
    0 references
    0 references
    7 November 2016
    0 references
    Let \(A\) be a Hermitian matrix of order \(n\) with eigenvalues \(\lambda_{1}\geq \lambda _{2}\geq\dots\geq \lambda _{n}\) and diagonal entries \(a_{1,1}, a_{2,2},\dots, a_{n,n}\). If an \(m<n\) exists such that \(\sum_{i=1}^{m}a_{ii}=\) \(\sum_{i=1}^{m}\lambda _{i}\), then \[ A=\begin{bmatrix} A_{11} & 0 \\ 0 & A_{22}\end{bmatrix} \] where \(A_{11}\) is an \(m\times m\) matrix. This result was proved by \textit{E. Fu} and \textit{T. L. Markham} [Linear Algebra Appl. 179, 7--10 (1993; Zbl 0767.15014)]. In the paper under review, the authors prove an analogous result in the setting of simple Euclidean Jordan algebras. The main tools in the proofs are the Cauchy interlacing theorem and the Schur-complement Cauchy interlacing theorem on simple Euclidean Jordan algebras (see [\textit{M. S. Gowda} and \textit{J. Tao}, Positivity 15, No. 3, 381--399 (2011; Zbl 1236.15047); Linear Multilinear Algebra 59, No. 1--3, 65--86 (2011; Zbl 1259.17024)]).
    0 references
    0 references
    Euclidean Jordan algebra
    0 references
    Cauchy interlacing theorem
    0 references
    Schur-complement Cauchy interlacing theorem
    0 references
    Hermitian matrix
    0 references
    eigenvalue
    0 references

    Identifiers