On an extension of Fu-Markham matrix theory result to simple Euclidean Jordan algebras (Q338924)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On an extension of Fu-Markham matrix theory result to simple Euclidean Jordan algebras |
scientific article; zbMATH DE number 6648460
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On an extension of Fu-Markham matrix theory result to simple Euclidean Jordan algebras |
scientific article; zbMATH DE number 6648460 |
Statements
On an extension of Fu-Markham matrix theory result to simple Euclidean Jordan algebras (English)
0 references
7 November 2016
0 references
Let \(A\) be a Hermitian matrix of order \(n\) with eigenvalues \(\lambda_{1}\geq \lambda _{2}\geq\dots\geq \lambda _{n}\) and diagonal entries \(a_{1,1}, a_{2,2},\dots, a_{n,n}\). If an \(m<n\) exists such that \(\sum_{i=1}^{m}a_{ii}=\) \(\sum_{i=1}^{m}\lambda _{i}\), then \[ A=\begin{bmatrix} A_{11} & 0 \\ 0 & A_{22}\end{bmatrix} \] where \(A_{11}\) is an \(m\times m\) matrix. This result was proved by \textit{E. Fu} and \textit{T. L. Markham} [Linear Algebra Appl. 179, 7--10 (1993; Zbl 0767.15014)]. In the paper under review, the authors prove an analogous result in the setting of simple Euclidean Jordan algebras. The main tools in the proofs are the Cauchy interlacing theorem and the Schur-complement Cauchy interlacing theorem on simple Euclidean Jordan algebras (see [\textit{M. S. Gowda} and \textit{J. Tao}, Positivity 15, No. 3, 381--399 (2011; Zbl 1236.15047); Linear Multilinear Algebra 59, No. 1--3, 65--86 (2011; Zbl 1259.17024)]).
0 references
Euclidean Jordan algebra
0 references
Cauchy interlacing theorem
0 references
Schur-complement Cauchy interlacing theorem
0 references
Hermitian matrix
0 references
eigenvalue
0 references
0 references
0 references