The upper limit value of the divisor function with growing dimension (Q393851)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The upper limit value of the divisor function with growing dimension |
scientific article; zbMATH DE number 6249920
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The upper limit value of the divisor function with growing dimension |
scientific article; zbMATH DE number 6249920 |
Statements
The upper limit value of the divisor function with growing dimension (English)
0 references
24 January 2014
0 references
Let \(\tau_k(n)\) be the number of representations of a positive integer \(n\) by product \(n=x_1x_2\cdots x_k\) with positive integers \(x_1,x_2,\ldots, x_k\). In addition, it is assumed that \(\tau_k(0)=0,\tau_k(1)=1\) and \(\tau_1(n)=1\). In the case \(k=2\), the value of \(\tau_2(n)\) equals to the number of different divisors of \(n\). In the paper, the case when \(k\) goes to infinity together with \(n\) is considered. For instance, it is shown that the upper limit \[ \limsup\limits_{n\rightarrow\infty}\frac{\log_2\tau_k(n)\cdot\log_2\log_2n}{\log_2n\cdot\log_2k}=1 \] is attained if \(k=k(n)\rightarrow\infty\) and \(k(n)/\log_2n\rightarrow 0\).
0 references
multidimensional divisor function
0 references
upper limit
0 references
rate of growth
0 references
growing dimension
0 references
0.8869786
0 references
0.8804689
0 references
0.87875015
0 references
0.8785359
0 references
0.8774686
0 references
0.87474334
0 references
0.8735697
0 references
0.87028927
0 references