On \(L^2\)-estimates for \(\overline{\partial}\) on pseudoconvex domains in a complete Kähler manifold with positive holomorphic bisectional curvature (Q447878)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On \(L^2\)-estimates for \(\overline{\partial}\) on pseudoconvex domains in a complete Kähler manifold with positive holomorphic bisectional curvature |
scientific article; zbMATH DE number 6073973
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On \(L^2\)-estimates for \(\overline{\partial}\) on pseudoconvex domains in a complete Kähler manifold with positive holomorphic bisectional curvature |
scientific article; zbMATH DE number 6073973 |
Statements
On \(L^2\)-estimates for \(\overline{\partial}\) on pseudoconvex domains in a complete Kähler manifold with positive holomorphic bisectional curvature (English)
0 references
30 August 2012
0 references
This note studies \(L^{2}\)-estimates for \(\overline{\partial}\) on relatively compact pseudoconvex domains in a Kähler manifold which posess a plurisubharmonic defining function. Such estimates are established, in particular, under a condition on an expression involving the complex Hessian (with respect to the Kähler metric) of the boundary distance. The expression is one that occurs when estimating the complex Hessian of powers of the boundary distance. The \(L^{2}\)-estimates are then obtained via the method of \textit{B. Berndtsson} and \textit{P. Charpentier} [Math. Z. 235, No. 1, 1--10 (2000; Zbl 0969.32015)].
0 references
Kähler manifolds
0 references
\(\overline{\partial}\)-operator
0 references
positive holomorphic bisectional curvature
0 references
plurisubharmonic defining functions
0 references
0 references
0 references
0.90763885
0 references
0.9026238
0 references
0.9006465
0 references
0.89970803
0 references
0.8972581
0 references
0.8970084
0 references
0.89632964
0 references