Infinitely many solutions for the spinorial Yamabe problem on the round sphere (Q506004)

From MaRDI portal





scientific article; zbMATH DE number 6678710
Language Label Description Also known as
English
Infinitely many solutions for the spinorial Yamabe problem on the round sphere
scientific article; zbMATH DE number 6678710

    Statements

    Infinitely many solutions for the spinorial Yamabe problem on the round sphere (English)
    0 references
    0 references
    27 January 2017
    0 references
    The setting of this paper is provided by the standard round sphere \((S^n, g_0)\) with \(n\geq 3\) and its standard spin structure. More precisely, the spinorial Yamabe problem \(D_{S^n}u=|u|^{p-1}u\) is considered for \(p=\frac{n+1}{n-1}\) and the Dirac operator \(D\). Let us recall that this equation has important applications in conformal geometry. The main result is Theorem 2.2: There exists an infinite sequence \((u_j)_{j\geq 1}\) of solutions to the spinorial Yamabe equation with energy \(E(u_j)\rightarrow \infty \) as \(j\rightarrow \infty \).
    0 references
    spinorial Yamabe problem
    0 references
    round sphere
    0 references

    Identifiers